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Reverse Osmosis Separation of NaCl
Using a Bentonite Membrane

T. M. Whitworth,"* Ucok Welo Siagian,” and Robert Lee®

"Department of Geological and Petroleum Engineering,
University of Missouri, Rolla, Missouri, USA
>Teknik Perminyakan (Petr. Engineering) ITB and Pusat Penelitian
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ABSTRACT

The results of 11 experiments using compacted bentonite membranes in
a cross-flow experimental cell equipped with a piston to maintain clay
membrane compaction are reported. Due to dispersion in the porous frit,
solute concentration buildup adjacent to the membrane was not a
problem at the flow rates used in these experiments (6 to 126 mL/hr).
The solute rejection efficiency of the bentonite membrane decreased
with increasing solution concentration. The rejection efficiency for
the 0.5-mm thick membrane ranged from 68% of Cl~ for 100-mM
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(3545 ppm) NaCl solution to 13% of C1~ for 2300-mM (81,542 ppm)
NaCl solution. The membrane exhibited stable solute rejection.

Key Words: Membrane; Clay; Reverse Osmosis; Brine.

INTRODUCTION

A number of laboratory experiments have demonstrated that clays
exhibit membrane properties.!! ~** Solute separation mechanisms for clay
membranes are described by Fritz®**! and Ishiguro et al.'*®! However, inves-
tigation of potential uses of clays as membranes has been limited.

Ishiguro et al.'*®! performed preliminary reverse osmosis testing on a
poorly compacted, 0.5-mm thick, modified montmorillonite membrane
(SWy-1 Wyoming bentonite, obtained from the Clay Source Repository,
University of Missouri-Columbia) to investigate the reverse osmosis
potential of clay. No compaction pressure was reported for the membrane
they used; the clay paste was simply smeared into the experimental cell.
They concluded that the montmorillonite membrane exhibited character-
istics typical for a charged membrane by rejecting NaCl less efficiently
with increasing solute concentration. They also concluded that the rejection
capability of the montmorillonite membrane for small organic solutes was
very low and that the separation of amino acids greatly depended on the
charge of the amino acid molecule.

The purpose of this study was to further investigate the potential use of
clays as reverse osmotic membranes. Clay membranes should reject solute
more efficiently at higher membrane compaction levels.!'*'*?*! Therefore,
a bentonite membrane compacted at 16.3 MPa (2360 psi) was tested for
NaCl rejection capacity.

METHODS

A flat-leaf experimental cell was designed for the reverse osmosis
experiments using clays as the membrane (Figure 1). This cell was constructed
from 316 stainless steel and is designed to operate at fluid pressures up to 20.7
MPa (3000 psi). The cell uses a piston to compress the clay. This feature is not
present in commercially available reverse osmosis (flat leaf) experimental
cells, but was necessary to maintain the compaction of the clay in these
experiments. The membrane area in the experimental cell is 136.5 cm?.

The bentonite clay used in these experiments was prepared using
methods presented by Fritz and Whitworth.*> The clay membranes were

270 Madison Avenue, New York, New York 10016
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Figure 1. Schematic cross-section of experimental cell used in reverse osmosis
experiments. The feed water flows into the feed port and then into the porous frit
overlying the membrane. At this point, some of the flow passes through the membrane
and some flows parallel to the membrane through the porous frit and exits through the
concentrate port. The permeant (the fluid that passes through the membrane) exits
through the permeant port. This apparatus is 25-cm long, 20-cm wide, and 7.6-cm
thick. Each of the three 316 stainless steel plates that comprise the apparatus are 2.5-
cm thick. The membrane area is 136.5 cm? and measures approximately 9 by 15
centimeters. The 316 stainless steel frits are each 3.2-mm thick.

prepared by first compacting a thin layer of freeze-dried clay sandwiched
between two Millipore and two Whatman #2 filters in a machined and
hardened steel die placed in a hydraulic press. The shape of the die
exactly matches the membrane recess in the experimental cell. The coarser
Whatman filter paper is used to protect the Millipore filter paper from
damage during pressing. Exactly 8.00 g of freeze-dried bentonite powder
was used to prepare the membrane used in these experiments. The dry
clay membrane was first compressed at 16.3 MPa in a hydraulic press for
2 days, then transferred to the cell and compressed while in the partially
assembled cell at 16.3 MPa for approximately 1 hour. Next, the cell
was assembled and the screws that lock the piston in place were torqued
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Figure 2. Schematic of experimental setup.

to 0.0031MPa. The cell was then set up as shown in Figure 2 for
the experiment.

The resulting membrane was 0.5-mm thick. The density of the freeze-
dried clay used was measured using a pycnometer so that membrane
porosity could be calculated from

1 -M
D = -100 1
<pcAAX> W
where @ is porosity, M, is the mass of the clay in grams, p, is clay density
(g/cm3), A is membrane area (cm?), and Ax is membrane thickness (cm).

The bentonite we used had a density of 2.17 g/cm® and the membrane
porosity was calculated as 46%.

Table 1. Summary of analytical methods, accuracy, and precision for chemical
analyses.

Species Equipment Method number Accuracy Precision

Chloride IC EPA300.0 <1% <0.5%
(< 0.0056M)

Chloride FIA QuikChem 0.5% 0.5%
(>0.0056M) 10-117-07-1-J

Accuracy and precision are stated at 1 standard deviation. Error bars on graphs are
at plus or minus 2 standard deviations. IC =ion chromatograph; FIA = flow in-
jection analysis.

270 Madison Avenue, New York, New York 10016
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Figure 3. Results of experiment CF-1.

The pump used in these experiments was a Beckman model 110A single-
piston, high-pressure liquid chromatograph pump (Palo Alto, CA, USA). It
has a variable flow range of from 0 to 594 mL/hr and will operate at pressures
up to 41.4 MPa. Before beginning the experimental run, the dry clay
membrane was hydrated in place by passing type I deionized water into the
cell at rate of 30 mL/hr for 2 days. After 2 days, the outlet needle valve was
slowly adjusted until the inlet pressure was about 4.13 MPa (600 psi) and the
NaCl solution was flushed through the cell. Samples from the reservoir, outlet,
and effluent streams were then taken at almost constant intervals during the
experiments. A series of tests using different NaCl concentrations and
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Figure 4. Results for experiment CF-2.
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Figure 5. Results for experiment CF-3.

different flow rates were carried out to investigate the effect of differing solute
concentration and flow rate on salt rejection efficiency.

Chemical Analyses

Ion chromatography (IC) was used to measure low concentrations of
chloride below 5.6 mM (200 ppm) after dilution. The ion chromatograph
was a Dionex 600 with an AS50 autosampler and chromatography
compartment, CD25 conductivity detector, and a GP50 gradient pump
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Figure 6. Results for experiment CF-4.
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Figure 7. Results for experiment CF-5.

(Sunnyvale, CA, USA). The column was a Dionex AS14. A series of standard
solutions was used to calibrate the instrument. Internal reference standards
were run near the beginning and end of each IC run. Calibration checks were
run every 20 to 30 samples and a duplicate sample was run every 10 to 12
samples. Internal reference standards of CI™ =40.4 ppm (1.14 mM) were
periodically run. The results of these analyses were C1™ = 40.4 ppm (1.14 mM),
40.8 ppm (1.15 mM), and 40.1 ppm (1.13 mM).

High chloride concentrations above 200 ppm (5.6 mM) were analyzed
with a Lachat QuikChem 8000 flow injection analysis automated ion
analyzer (FIA) using QuikChem method 10-117-07-1-J. This method covers
the determination of chloride in drinking, ground, and surface waters, and
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Figure 8. Results for experiment CF-6.
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Figure 9. Results for experiment CF-7.

domestic and industrial wastes. The applicable range is 200 ppm (5.6 mM)
to 24,995 ppm (705 mM) CI. Dilutions were made when concentrations
were above this range. The method detection limit is 7.45 ppm (0.21 mM).
Triplicate analysis were conducted for each calibration standard and a 0.5%
RSD was set as replicate criteria. Analytical accuracy and precision of
chemical measurements are presented in Table 1.

RESULTS

We performed 11 experimental runs with NaCl solutions using
commercially available bentonite clay as a membrane in a cross-flow
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Figure 10. Results for experiment CF-8.
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Figure 11. Results for experiment CF-9.

reverse osmosis cell (Table 2). A single clay membrane was used for
experiments CF-1 through CF-11 (Figures 3—13).

The Cl ™~ rejection results are plotted in Figures 3—13 and ranged from
68% for 100-mM (3545 ppm) solution to 13% for 2300-mM (81,542 ppm)
solution. Rejection, R, was calculated via

Cr— G,

R —
Ce

(100) (2)

where Cy is the steady-state feed Cl1~ concentration and C, is the steady-
state permeant concentration. The graphs indicate that steady-state solute
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Figure 12. Results for experiment CF-10.
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Figure 13. Results for experiment CF-11.

rejection was obtained. In experiments CF-6 through CF-11, the solution
concentration was increased after each experimental run and the early
permeant concentrations reflect the displacement of the previous solution
from the cell and membrane before steady state was reached.

DISCUSSION

The 11 experiments were designed to test chloride rejection as a
function of solution feed rate, and test chloride rejection as a function of
concentration. Determination of chloride rejection as a function of flow rate
included experiments CF-1 through CF-5, and determination of chloride

rejection as a function of solute concentration included experiments CF-1,
CF-2, and CF-6 through CF-11.

Chloride Rejection as a Function of Flow Rate
Parallel to the Membrane

The purpose of these experiments was to determine if a concentration
polarization layer (a zone of increased concentration), or CPL, was forming
adjacent to the membrane during solute rejection. If concentration polar-
ization occurs, the membrane is exposed to higher solute concentrations and
membrane rejection efficiency will decrease.®'! In this series of experi-
ments, feed solution flow rates were varied between 0.1 mL/min and
1.7 mL/min. There was no significant difference in CI~ rejection for the
lower flow rates and the rejection was slightly, though significantly, lower
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for the highest flow rate (Figure 14). The results suggest that when a porous
frit is used with a clay membrane, instead of the plastic waffle-shaped grid
typically used with synthetic membranes, high cross-flow rates may not be
needed to achieve optimum solute rejection. This is thought to occur be-
cause the frit material is a porous media and dispersion effects in the pores
destroy the CPL at lower flow rates than might otherwise be expected.

Chloride Rejection as a Function of Solute Concentration

These experiments (CF-1, CF-2, and CF-6 through CF-11) had similar
flow rates and varied the feed solution concentration between 355 ppm (10
mM) and 81,542 ppm (2300 mM) C1™. The average CI™ rejection is plotted
as a function of concentration (Figure 15). Chloride rejection decreases as
the chloride concentration increases in the feed water.

Ishurguro et al.*” reported on two runs using montmorillonite mem-
branes in a cross-flow cell with NaCl solutions. As interpreted from their
figure, their NaCl separation results are: 88% and 30% for 35.5 ppm (1.0
mM) NaCl, 83% and 25% for 355 ppm (10 mM) NaCl, and 50% and 3%
for 3545 ppm (100 mM) NaCl. We did not use a 35.5 ppm (1.0 mM) or a
355 ppm (10 mM) NaCl solution, however, our runs with approximately
3550 ppm (100 mM) NaCl had CI™ rejections between 66% and 68%. Our
CI” solute rejection with approximately 3550 ppm (100 mM) NaCl was
consistently higher than the results achieved by Ishiguro et al.®*®' The
higher solute rejection may be attributable to the higher compaction (16.3
MPa) used in our membrane. Ishiguro et al.”” did not physically compact
the clay in their experiments; it was simply smeared into the cell. Thus,

70
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Figure 14. Chloride rejection vs. total pumping rate.
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Figure 15. Chloride rejection as a function of chloride concentration.

quantitative comparison of the compaction level used in our experiment
with that used in theirs is difficult.

Relation Between Pumping Pressure and
Solution Concentration

The theoretical maximum osmotic pressure increases with increasing
solute concentration. Therefore, the hydraulic pressure needed to offset
osmotic backflow should increase as feed water concentrations increase.
This was the case with the bentonite membranes tested. As the feed

Chloride Concentration (mM)

0 500 1000 1500 2000 2500
6 1 1 1 1 ]

Cell Inlet Pressure (mPA)

3 T T T T
0 20000 40000 60000 80000

Chloride Concentration (ppm)

Figure 16. Feed solution pressure as a function of chloride concentration.
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solution concentration increased, the required pumping pressure generally
increased as well (Figure 16).

Synthetic membranes designed for seawater desalination require feed
pressures of 5.5 MPa (800 psi) to 8.14 MPa (1180 psi).[32J Seawater has a
dissolved solute concentration of about 35,000 ppm (1000 mM) NaCl
equivalent. The bentonite membranes used in these experiments required a
feed pressure of 8.14 MPa (800 psi) for solution concentrations between
35,000 ppm (1000 mM) and 88,630 ppm (2500 mM).

Permeant Flow Rate

The permeant flow through the 0.5-mm thick bentonite membranes
ranged between 0.2 to 5% of the total flow delivered by the pump. The clay
membranes we used did not exhibit high permeant flow. For example,
Marifias and Selleck®"! ran bench-scale cross-flow tests with two synthetic
membranes (FT-30, FilmTec Corp., Minneapolis, MN and TFC, UOP Fluid
systems, San Diego, CA) and reported permeant fluxes between 2.8 x 10~*
and 1.07 x 10 cm-s~'. Our permeant fluxes average three orders of
magnitude less (1.14 x 107 to 2.44 x 10”7 cm-s~") than those reported by
Marifias and Selleck.®!! Since the relationship between flow rate and
pressure is generally considered to be linear, when all other factors such as
solute type and concentration, and membrane properties, such as porosity
and compaction, remain constant, thinner clay membranes should result in
significantly increased permeant flux. As an example, consider experiment
CF-2 where the permeant flux (4.27 x 1077 cm-s_l) was 0.5% that of the
total flow. If the membrane thickness were decreased to 0.005 mm and
0.0005 mm, the permeant fluxes would then be 4.27 x 107> and
427 x 107 cm-s™', respectively. Thus, very thin clay membranes may
exhibit permeant flow rates similar to synthetic membranes.

SUMMARY AND CONCLUSION

The total flow rate was not critical in achieving optimum solute
rejection although it appears that the highest flow rates used in our
experiments (above 100 mL/hr) may have had a slight deleterious effect
on solute rejection efficiency. Due to dispersion in the porous frit used
adjacent to the membrane, the observed concentration polarization layer
(CPL) seems to be destroyed at low flow rates. This observation suggests
that membranes used with porous frits adjacent to the membrane may reach
optimum solute rejection at lower flow rates than required when spacer
grids are used.

270 Madison Avenue, New York, New York 10016
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Solute rejection efficiency decreases with increasing solute concentra-
tion. For the membranes and experiments reported here, the CI~ rejection
efficiency ranged from 68% for 100-mM (3545 ppm) NaCl solution down
to 13% for 2300-mM (81,542 ppm) NaCl solution. For more compacted
clay membranes, solute rejection efficiencies should be higher.

The clay membrane we used was 0.5-mm thick. The active layer of
most synthetic membranes is only 0.04 pm (0.00004 mm), approximately
12,500 times thinner than the clay membranes used in these experiments.
Since Darcy’s law states that the flow through a material of constant
permeability is inversely proportional to its thickness, then a very thin clay
membrane with identical properties would be expected to have much higher
permeant flow rates than the ones used in these experiments. The mem-
branes exhibited stable C1™ rejection for a range of concentrations between
3545 ppm (100 mM) and 81,542 ppm (2300 mM).
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